Image Denoising Based on the Asymmetric Gaussian Mixture Model
نویسندگان
چکیده
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملSURE Guided Gaussian Mixture Image Denoising
The Gaussian mixture is a patch prior that has enjoyed tremendous success in image processing. In this work, by using Gaussian factor modeling, its dedicated expectation maximization (EM) inference, and a statistical filter selection and algorithm stopping rule, we develop SURE (Stein’s unbiased risk estimator) guided piecewise linear estimation (S-PLE), a patch-based prior learning algorithm c...
متن کاملEffective Color Image Retrieval Based on the Gaussian Mixture Model
The main problem addressed in this paper is as follows: a system applying the proposed framework should retrieve all images whose color structure is similar to that of the given query image, independently on the applied lossy coding. We propose an approach based on the color histogram approximation using the Gaussian Mixture Model. The proposed method incorporates the information on the spatial...
متن کاملWavelet-Based Bayesian Denoising Using Bernoulli-Gaussian Mixture Model
In general, wavelet coefficients are composed of a few large coefficients and a lot of small ones. Therefore, each wavelet coefficient is efficiently modeled as a random variable of a Bernoulli-Gaussian mixture distribution with unknown parameters. The Bernoulli-Gaussian mixture is composed of the multiplication of the Bernoulli random variable and the Gaussian mixture random variable. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal on Internet of Things
سال: 2020
ISSN: 2579-0099
DOI: 10.32604/jiot.2020.09071